CHAPTER 16 - VECTOR CACULUS

Reviewing the function types we have learned:

Scalar Functions: Vector Functions:
(1) (3)
(2) (4)

| 16.1: Vector Fields

1| Definition Let D be a set in R? (a plane region). A vector field on R is a
function F that assigns to each point (x, y) in D a two-dimensional vector F(x, y).

F(x,y)=Plx,y)i+ Q(x,y)j= (P(x,v), Q(x, y))
Extends to R3: F(x,y,z) = Plx,y,2)i + Q(x,v,2)j + R(x,v,2) k

Example: F(x,y)=—-yi+xj= (—y,x>
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See Vector Field Plotter on 5C page Physical Applications: force fields, gravitational fields, electric fields...
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(a) 6:00 pm, March 1, 2010 (b) 6:00 Am, March 1, 2010

*IGURE 1 Velocity vector fields showing San Francisco Bay wind patterns

Other examples of velocity vector fields are illustrated in Figure 2: ocean currents ani
flow past an airfoil.

(8 Ocean currents offhe cout of N Scota (6 Aiflow past an inclined sl
A Vector Field we have already encountered:

Given z=f(xy). Vf(ey)=(f.(xy).f,(xy) is a vector field.

A vector field F(x.y) is called if it is the gradient of some scalar function f(x,y) called the potential
function

Example: If f(x,y)= x2y - y3, then F(x,y)=Vf(x,y)= is conservative and is the potential

function for F(x.y)



Note: later in the chapter, we will learn how to find the potential function for a given conservative vector field.

Hint on homework matching problems:

11. F(x,y) = (x, —y) 13. F(x,y) =(v,y + 2)

12. F(x,y) = {(yv,x — v) 14. F(x,v) = (cos(x + y), x)
I 5 “ 3

I 3 v 3

o]
(5]
-



16.2 partii: Application of Line integral: Work

Force Applied in the Direction of Motion Force Not Applied in the Direction of Motion
(Review Section 5.4

Constant Force Constant Force

Variable Force. Variable Force

Suppose F(x,y)=P(x.y)i +Q(x.y)] is a continuous vector field (physically, a force field such as gravitational or electric force
field) How can we compute the work done by the vector field in moving a particle along a smooth curve given by
Fit)=(x(t).y®), a<t<b

(The derivation for R3 is similar).
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So Work = Jﬁo T ds Book notation: Work= Jﬁ. dr
C C

Example: Find the work done by the vector field F(x.y)=(xy.2x-y)in moving a particle along the curve given by r(t)= <t,l2> ;
0<r<1

Shortcut:

b
So by definition: Work = Jﬁo T ds For computation: Work= Jﬁ. 7 dt Book shorthand notation: Work= Jﬁ. dr

C a C

In General for F(x,y)=P(x,y)i +O(x,y)j in R2with 7(t) = (X(t),y(t)> ,a<t<b

b
Work = Jﬁo T ds= Jﬁo 7 dt= “differential form”




Extends to R3

Example: Find the work done by the force field F(x,y,2)= <x2 ,y2,22>on a particle that moves along the line segment from
(1,2,-1) to (3,2,0), then from (3,2,0) to (3,2,1).

Alternate notation: Find J.xzdx +y2dy+z°dz
C



| 16.3 More methods of computing the WORK line integral - Fundamental Theorem of Line Integrals

Recall from last time: to compute the work done by the vector field in moving a particle along a smooth curve given by
Fit)=(x(t).y®), a<t<b

By definition: Work = Jﬁof ds

C

Example:

b
For computation: Work= Jﬁo 7 dt

a

Book shorthand notation: Work= Jﬁo dr

C

(a) Find the work done by the vector field F(x,y)=(-y,x)in moving a particle from (0,0) to (1,1) along the curve y = x

(b) Changing path, let the particle from (0,0) to (1,1) along the curve y = \/;

x =4t

Just for variety, use “creative” parameterization, {y =2+

Observations:

Positive Work

Negative Work

Reverse direction changes sign

Does not depend on parameterization
Does depend on path
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Example:
(a) Find the work done by the vector field F(x,y)= {y,x)in moving a particle from (0,0) to (1,1) along the curve y = x

(b) Changing path, let the particle from (0,0) to (1,1) along the curve y = 1/;
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Fundamental Theorem of Line Integrals (book states differently)

Suppose F(x,y)= (P(x,y),Q(x,y)) where P and Q are continuous in some open region containing a piecewise smooth curve C

which starts at (x,.y,) and ends at (x,.y,), if IE(X,y) = ﬁf(x,y) for some f(x,y) at each point in the region, then

jﬁOd?:
C

That s, if F(x,y) is , we can evaluate the work integral by evaluating the function
at the endpoints and subtracting. (Note the similarity to the Fundamental Theorem of Calculus) Extends to R3.

Proof: For a smooth curve C given by 7(t)=(x(#),y(t)); a<t<b where (x,.y,)=7(a) and (x,.y,)=7(b), and

F v df If
conservative vector field £ (*:) = Vf (x.y) = <£,$>’
b
JﬁOd?:jﬁO?'dtz
C a

On previous example, note that F(x,y) = (y.x)= Vf (x,y) where f(X,y)= Xy . Sowe can compute

jﬁ-d?=f(1,1)—f(0,0)

C

This idea is called




Suppose for the same F(x,y)=(y,x), we wanted to compute the work in moving a particle around the piecewise smooth curve
from (1,2) to (0,1) to (3,0) and back to (1,2)

Fedr

C

So, if F(x ,y) is conservative, we have two additional options for how we compute

1)

2)

Note, if the curve is closed,

How do we know if F(x,y) is conservative and if so, how do we find the potential function

First, notice:

If F(x,y) is conservative, then f(x,y) = (P(x,y),Q(x,y)) can be written f(x,y) = §f(x,y):

If F(x,y) = P(x,y)i + Q(x, y) jis a conservative vector field,
where P and Q have continuous first-order partial derivatives on a domain D,
then throughout D we have

oP d ()

dy dx

But that is not quite what we need. The converse of this theorem is only true in a special type of region.



Conservative Field Test for R2

6] Theorem LetF = Pi + Q jbe a vector field on an open simply-connected
region D. Suppose that P and Q have continuous first-order partial derivatives and
aP a0

ay ox

throughout D

Then F is conservative.

From previous examples:

F(x,y)=(-y,x) F(x,y)={y,x)

simple, not simple,
not closed not closed
simple, not simple,
closed closed
FIGURE 6

Types of curves

simply-connected region

regions that are not simply-connected

FIGURE 7

Example: Show that F(x,y)= <3+2xy,x2 - 3y2>iS conservative and find the potential function.



One example, three ways

Find the work done by the vector field F(x,y)= <ey ,xe»">in moving a particle along the curve given by 7 () = <COS t,8in f>; 0<r<m



Identifying conservative vector fields from plot.
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Conservative Field Test
29. Show that if the vector field F = Pi + Qj + Rkis
conservative and P, Q, R have continuous first-order partial
derivatives, then
P 0 dP  aR 90  OR

dy ox 0z ox 0z dy

- 2 2 2 2
Example: Find the work done by the vector field F(x.,y,2) = <)’ 2+2xz°,2xyz, xy" +2x Z>in moving a particle along the curve

given by ?(t)=<w/;,t+1, t2>; 0<r<1



16.4 Green’s Theorem

Lead in problem:

Compute J'xzyz dx +xy dy where C consists of the arc of the parabola y=x2 from (0,0) to (1,1) followed by the line segments

c
from (1,1) to (0, 1) and then (0,1) to (0,0).

—_

Green’s Theorem Let C be a positively oriented, piecewise-smooth, simple

closed curve in the plane and let D be the region bounded by C. If P and Q have Notes:
continuous partial derivatives on an open region that contains D, then - See proof in book.
) , - Green’s Theorem can be use reverse
' Pdx+ Qdy = H ("Q = ﬁ) dA to compute double integrals and area.
e o 0X 0) - Green’s Theorem can be extended to

more complicated regions.



Example: Find the work done by the vector field F(x.,y)= <e”‘ +y2e” +x2>in moving a particle along the piecewise smooth curve

shown.

—
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16.5 Curl and Divergence

Two operations on vector fields. Useful in applications of vector calculus including fluid flow, electricity and
magnetism. See 5C page for physical description and applications.

@ Curl

IfF = Pi+ Qj + Rkis avector field on R* and the partial derivatives of P, Q, and R
all exist, then the curl of F is the vector field on R* defined by

: - dR a0 \ . JdP dR \ . a0 JP
(1] curl F=|—-—1Ji+|———)j+|———Jk
dy 0z 0z ox ox dy

@ Divergence

IfF =Pi+ QJ + Rkisa vector field on R* and dP/ax, dQ/dy, and dR/dz exist, then
the divergence of F is the function of three variables defined by

, P ) IR
9] dgivF =204 92, Ok

ox dy dz

d- [d d d
: - « ) V:—l +— +—k: -
Notation to help remember these formulas. Define the “del operator P J o < ) >

- Jd - d - d -
Gradient: v ZE l+@ J+£ k

Curl: curl 13 = ﬁx I:“

Divergence: divF=VeF



—

Example: For F= <)’Z, XZ xy+2z>, compute curl F ang divF

Test for Conservative Vector Field in R3,

Recall from last section: 29. Show that if the vector field F = Pi + Qj + Rkis
conservative and P, Q, R have continuous first-order partial
derivatives, then

P _09Q P _R QiR

dy ax Jdz ox dz dy

@ Theorem If F is a vector field defined on all of R* whose component func-
tions have continuous partial derivatives and curl F = 0, then F is a conservative
vector field.

Physical Description of Curl and Div: See CalcPlot 3D, Plot vector field, show curl.

The reason for the name curl is that the curl vector is associated with rotations. One
connection is explained in Exercise 37. Another occurs when F represents the velocity
field in fluid flow (see Example 16.1.3). Particles near (x, y, z) in the fluid tend to rotate
about the axis that points in the direction of curl F(x, y, z), and the length of this curl
vector is a measure of how quickly the particles move around the axis (see Figure 1). If
curl F = 0 at a point P, then the fluid is free from rotations at P and F is called irrota-
tional at P. In other words, there is no whirlpool or eddy at P. If curl F = 0, then a

Again, the reason for the name divergence can be understood in the context of fluid
flow. If F(x, y, z) is the velocity of a fluid (or gas), then div F(x, y, z) represents the net
rate of change (with respect to time) of the mass of fluid (or gas) flowing from the point
(x, v, z) per unit volume. In other words, div F(x, y, z) measures the tendency of the fluid
to diverge from the point (x, y, z). If div F = 0, then F is said to be incompressible.




16.7ii Examples: FLUX Surface Integral in a VECTOR FIELD over a Surface given by a FUNCTION (without parametric surfaces) ’

Recall, 16.7i, surface integral of a scalar function:

For surface S given by z=g(x,y) over a region D in the xy plane:

”f(x,y,z)ds = ”f(x,y,g(x,ym/gﬁ +g,7+1dA
S D

Similarly for the other two orientations y=g(x,z), x=g(y,z)

Here we will consider an application of the Surface Integral

Suppose S is a surface in a vector field F(x.y.z), and suppose 7 is a unit vector, normal to the surface at a given point. The
component of F(x.y.z) in the direction of n is given by :

ZA -

,\/

FLUX Integral: J'J‘ Fends
S

Specific application: Let F(x.y.z)=p(x.y.z)v(x.y.z)Where P is the fluid density (mass/volume) and 7 is the velocity

(Iength/time). Then the units of P V are . Multiplying by area gives mass/time or rate of flow.




We will learn a shorter way to compute Flux, but for now all we would need to do is find the unit normals, n (with desired

orientation), take the dot product with F' leaving us with a scalar function. So if we call Feii= f(x,y,2), we are back to 16.7i
where we compute surface integrals by computing dS etc.

For surface S given by z=g(x,y) over a region D in the xy plane:

”f(x,y,z)dS = J‘J‘f(x,y,g(x,y))\/gx2 +gy2 +1dA
D

S

H(ﬁ- i) dS = J.J. (ﬁ-ﬁ)wfgxz +g,° +1dA
S D

Other orientations similar.

Before we get to an example, let’s discuss what we mean by orientation and review how to find unit normals.

Orientation:
At any point on a surface that has nonzero normal vectors, there are two choices for unit normals. Which one we choose to use
in the above formula will determine which direction corresponds to positive Flux.

n,

Unless otherwise stated, the convention is to choose the normal that has
a positive component for the dependent variable (z in most cases).




Other Orientations:

1
N

However, if the surface is closed, the convention for positive orientation is to choose normals that point outward.
4 Z.

X

FIGURE 8 FIGURE 9
Positive orientation Negative orientation



Finding Unit Normals: We found earlier, when finding tangent planes, that if we express a surface as a level surface of a
function of 3 variables, then the gradient of that function is normal to the level surface. That is, for the surface G(x,y,z)=k, VG is

normal to the surface. Then the unit normal 7= MG .

Example: Find the unit normals for the surface x2+y%+z2=1;2>0

Consider two approaches. One is easier, but the other will lead to a shortcut in computing flux.

1) Let G(x.y.z)=x>+y?+z* (so the given surface is a level surface of G) . Then ii= !

et ren? e’

1
Gl G (2x,2y,2z)
2) This time we will solve for z first to write the surface in function form. z=41-x*-y*. Then write it in the form

. N
z-41-x?>-y2 =0 so we can treat it as a level surface of G(x,y,2)=z-41-x*-y2. NOW find 7i=—VG.
Iva]



In general, if we find the unit normals in the second way, writing z in function form as z=g(x,y) = z-g(x.y)=0 and treat this

?GH = \/(—gx)2 +(—gy)2 +17 , SO

YG \/gx2+gy2+ldA=jj[I;o )\/gx2+gy2+1dA
ve 5

surface as a level surface of the function G(x,y,z)=z—g(x,y) then VG = <—gx’— 8y> 1>, thus ‘

H(ﬁoﬁ)dszﬂ F
S D

Computing Flux - the shorter way.
For a surface S given by z=g(x,y), IF we write this surface in the form z-g(x,y)=0 and consider it a level surface of the function

G(x,y,z)=z-g(x,y), then

H (Feii)dS :H (Fe VG )dA
S D

will give the flux for an upward orientation. If downward orientation is desired, we use —VG (or just take the opposite of the
answer) Note, the z component of VG must be 1 for the shortcut to work.

(all in terms of x and y)

Book notation: If F=(P,Q,R)

”F-ds" ”(Fon)ds J. (P——Q € L R)dA

. - . 0<x<2 " . .
Example: Find the flux for F(x,y,z)= <yz,xz,xy> given the surface z=xsiny; {0 - * < Positive orientation assumed unless
y

otherwise specified.




Different orientation — Formulas follow logically

Example: Find ”ﬁoa@ for F(x,y.2)= (-x,2y,~z) where S is the portion of y=3x2+3:2 to the left of y=6 oriented in the positive y
S

direction.
L ]
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Example: Flux on a closed surface,

Find fluxif F(x,y,2)=(y,2x, z—8) where S is the surface of the solid bound by 4x+2y+z=8, z=0, y=0, x=0 with positive
orientation.

A

an

[7s5-(3)+(-5)+ () o [
S




16.8 Review of Line Integrals and Stokes’ Theorem

- ) 3.2
Problem: Given F(x,y,2)= <x 4xy”.y x> , where C is the piecewise smooth curve following the line segments from
(0,0,0) to (1,0,0) to (1,3,3) to (0,3,3) and back to (0,0,0), find work.




Review of Line Integrals

Line integral With Respect to Arc Length:

Line integral in a Vector Field - Work:

Directly:

IF F'is conservative:
1)
2)

If Cis a closed curve in

New: IfCisa closed curve in




Note: Green’s Theorem is a special case

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is
Partial proof in book.

bounded by a simple, closed, piecewise-smooth boundary curve C with positive
orientation. Let F be a vector field whose components have continuous partial
derivatives on an open region in R* that contains S. Then

"(_ F-dr= H curl F - dS
s

r _ 2 3.2
Back to previous problem: Given F(x,y,2)= <x 4xy”.y x> where C is the piecewise smooth curve following the line

segments from (0,0,0) to (1,0,0) to (1,3,3) to (0,3,3) and back to (0,0,0), find work




One example, many ways:

Given F'(x,y,z) = <x —Y, Y=, 32— x> where C is the curve of intersection of the sphere x* +y? +z? = 2 with the
paraboloid z = x> +y?, oriented in the positive direction.

n
N 0
- — == — =

-
0



16.9 Review of Flux Integrals and Divergence Theorem

Review of Surface Integrals:

Surface Integral of Scalar Function:

Surface Integral in Vector Field - Flux

29. F(x,y,z) = xi+ 2yj + 3zKk,
S is the cube with vertices (=1, *=1, *1)

HW Problem 16.7: Find Flux




The Divergence Theorem: A tool for computing flux for a CLOSED surface.

The Divergence Theorem Let E be a simple solid region and let S be the
boundary surface of E, given with positive (outward) orientation. Let F be a vec-
tor field whose component functions have continuous partial derivatives on an
open region that contains E. Then

([ F-as = ([[ divFav
s E

Redo previous problem:

Example from 16.7 notes: Find Flux.

F(x,y,2)= (y,2x, Z- 8> where S is the surface of the solid bound by 4x+2y+z=8, z=0, y=0, x=0 with positive orientation.



16.6 Parametric Surfaces

Parametric Curves:
Recall in R?, curves can be expressed as an equation in two variables, or as a vector function, equivalent to a pair of parametric

equations.

x=t

. . - 2 Ly .
For example: y=x? can be expressed using the vector function 7(f) = <f, ! > which is equivalent to C: { 2
y =

Parametric equations are sometimes expressed as a mapping from the number line for t to the xy plane.

r(t) 74

Using parametric equations can be especially helpful in cases where the equation can not be expressed as a function of x or y,
but CAN be expressed as functions of t.

X =
Example: x*+y” =4 could be written as , but parametrically we can write: {y _

Parametric Surfaces:
Up until now, we have expressed surfaces as equations in 3 variables, which may or may not be expressed in function form. In
a way similar to what was done with parametric curves, surfaces can be expressed parametrically as:

r(u,v) = x(u,v)i + y(u,v)j + z(u, v) k

and can be thought as a mapping from R? to R3.

UA A

ru,r)




Example: Eliminate the parameters to determine the surface given by: 7(u,v)=ucosvi +u j+usinv k

More often, we will be given the equation of the surface, and need to parameterize it.

1) Paraboloid x= 3y2 +2z%+7

2) Cylinder x*+y*=4; 0<z<l

3) Sphere: x? +y2 +z2=25



Finding Tangent Planes to Surfaces Given Parametrically

(uy, Uy)
V=1, - /C,

D U= u,
0l
0 u / — 9 rd
If v=vo, constant, then 7(u.,v)=7(u.v,) is a vector function of one parameter only and so yields a on the surface,
= J - - N
and 7' (u,vg) = Er(u’v) =1, (u,v) which yields . Similarly if u=uo then

_, J _ -
r'(ug,v )= g"(u,") =r,(u,v) shown above.

What would we get if we took 7, (u,v) X7, (u,v)?

Example: Find the tangent plane to the surface 7(u,v)= <u,2v2,u2 +v>at (2,2,3)

Surface Integrals with Parametric Surfaces.

Looking back at our derivation of surface integrals of a scalar function, we needed to determine dS in the integral J]f (x.y.,z)dS
s

Finding ASU , the area of the ijt" patch. (See section 15.5) .

AT



Using parametric surfaces to find ASZ] , we already have 7, (#;*,v;*) and 7, (#;*,v ;*) tangent to the surface. We just need

to find the right length to form the sides of the parallelogram.

R;,

Note that the four corners of Rjymap into the four corners of Sij.

FQup * +Au, v ;%)= r(u*, v ;*)
Au

P, v i) Au =7 (u; * +Au,v ;%) —r(u;*,v ;*) which is the vector we need. Similarly for. 7, (u;*,v ;*)Av |

Then
AS;i =||Aur, X Avr, |= Aulv

Thus to do a surface integral in parametric equations, replace dS with ‘ Aur,

By the definition of the partial derivative we find that 7, (#;*,v ;) S0

Arr

|7, X7,




16.7i EXAMPLES: Surface Integral of a Scalar Function f(x,y,z) over a Surface using parametric surfaces.

For surface S given by z=g(x,y) over a region D in the xy plane, we compute the surface integral by replacing z=g(x,y) into f and

using
ds = '\/gxz +gy2 +1dA
and dA can be viewed as dydx, dxdy or rdrd6

jjf(x,y,z)dS = J.J‘f(x,y,g(x,y))\/gx2 +8,°+1dA
S

(Recall: The process is similar for x=g(x,y) or y=g(x,z) )

If the surface is not easily written in function form but instead is easily represented parametrically, we may prefer the
following method.

If the surface S is given parametrically by 7(u,v)=(x(u,v),y(u,v),z(u,v)) over a domain D in the uv plane, we compute the
surface integral by replacing x with x(u,v), y with y(u,v) and z with z(u,v) in f(x,y,z) and using

. ds =| 7, x7,|dA
and dA can be viewed as dudv or dvdu.

jjf(x,y,z)dszj Fe(u),y@w)z(uv)|| 7, x7, || dA
S

Example:
Find the surface area of the portion of the sphere centered at the origin of radius 4, that lies inside the cylinder x*+y%=12

Parameterize sphere:
Find dS= |y X7 |dA




Revisit Example 3 in the book. We computed this earlier without parametric surfaces. For the top we got %”and for the

bottom we got 0. Then on the sides we had to break into two surfaces: and See

Now we are able to use parametric surfaces instead, as done in the book.

- " . s

5 5 5.

Spiz=1+x) EXAMPLE 3 Evaluate |[, z dS, where § is the surface whose sides §, are given by the
i) cylinder x* + y* = 1, whose bottom S is the disk x* + y* = 1 in the plane = = 0, and
whose top S is the part of the plane - = | + x that lies above §..

SOLUTION The surface § is shown in Figure 3. (We have changed the usual position
of the axes to get a better look at §.) For §, we use # and - as parameters (see Exam-
ple 16.6.5) and write its parametric equations as

x = cosf y = sinfl z=2




16.7ii Examples: FLUX Surface Integral in a VECTOR FIELD over a Surface given by a FUNCTION (using parametrics surfaces)

Recall that without the shortcut, Flux was given by: JJF * dS ZJ. (Fen)dS
s

If our surface is now given parametrically, we know that 7, X7, is normal to the surface, thus to make a unit normal,
- 1
]

—r Xr
|7, x|

and the flux integral becomes

”F-ds ”(F-n)ds J (Fo r x7,) ||, x7|dA

giving us the shorter way to compute Flux:

”13- d§=”(ﬁoﬁ)dS=J (F e (7, XT,))dA
S S D

Example: Compute the flux of ﬁ(x,y,z) = (x,y,5> across S where S is the boundary of the region enclosed by the cylinder
x?+z2=1 and the planes y=0 and x+y=2 oriented outward

This is a piecewise smooth closed surface, thus we must consider the left side, the right side, and the cylinder sides (top and
bottom).

Left side: y=0. As done previously is a function y=g(x,z). Need left pointing (negative y) unit normals.

J'J‘(Fon)dS ”(F-VG)dA ”xos *(0,-1,0)dA =0

left
Right side: y=2-x As done prev1ously is a function y=g(x,z). Need right pointing (positive y) unit normals.
G=y+x-2, VG=(1,10)

”(F-n)ds ”(F-VG)dA ”u x,5)¢(1,1,0)dA = szA 2areaD =21

right




Cylindrical Sides
(Can do separately as top and bottom z=g(x,y) or use parametric surfaces and do as one integral

Parameterize S:
x =cosf
y=y = 7(y,0)=(cos,y,sin0>; 0<y<2-x, 056<2rn

z=sinf

?y = ?9 = =
Fy XTp ={c0s6,0,5in0) (orientation)

F.(FyX?e):

”13- ds = ” (Feii)dS = ”(ﬁ*- (7, X Ty ))dA =J. (cos” @ +5sin0)dA
S

S D D

Here, dA =dydO . We know 0<y<2—x, 0<6<2r,and in the parameterization, X = cosB so 0< y <2—cosf

2w 2—cos6
j (cos? 6 +5sin6)dA = J J(COSZG +5sin0)dyd6 =...= 21
D 0 0

So the total Flux=0+27w + 2w =41



