
CHAPTER	16	–	VECTOR	CACULUS	
	
Reviewing	the	function	types	we	have	learned:	
	
Scalar	Functions:	 	 	 	 	 	 Vector	Functions:	
	
(1)	 	 	 	 	 	 	 	 (3)	
	
	
(2)		 	 	 	 	 	 	 	 (4)	
	
		
16.1:		Vector	Fields	
	
	
	
	
	

	 	 	 	 	 	
	 	 	 Extends	to	R3:			
	
Example:		  

� 

! 
F (x,y) = −y i + x

! 
j = −y, x 	

	 	
	
	
	
	
	



See	Vector	Field	Plotter	on	5C	page		 	 Physical	Applications:	force	fields,	gravitational	fields,	electric	fields…	
	

	 	
Velocity	Field	of	Rotating	Body	
	

	 	
	
A	Vector	Field	we	have	already	encountered:	
	
Given	

  

� 

z = f (x,y),
! 
∇ f (x,y) = f x (x,y), f y (x,y) 	is	a	vector	field.	

	
A	vector	field		  

� 

! 
F (x,y) 	is	called	__________________________	if	it	is	the	gradient	of	some	scalar	function	

� 

f (x,y) 	called	the	potential	
function	
	
Example:		If		

� 

f (x,y) = x2y − y3 ,	then		  

� 

! 
F (x,y) =

! 
∇ f (x,y) = __________________________	is	conservative	and	_________________	is	the	potential	

function	for	  

� 

! 
F (x,y) 	

	
	
	
	



	
Note:		later	in	the	chapter,	we	will	learn	how	to	find	the	potential	function	for	a	given	conservative	vector	field.	
	
Hint	on	homework	matching	problems:	
	

	
	

	
	
	
	
	
	
	
	



16.2	part	ii:		Application	of	Line	integral:		Work	
	
	
Force	Applied	in	the	Direction	of	Motion	 	 	 	 Force	Not	Applied	in	the	Direction	of	Motion	
(Review	Section	5.4		
	
Constant	Force	 	 	 	 	 	 	 Constant	Force	
	
	
	
	
	
Variable	Force.	 	 	 	 	 	 	 Variable	Force	
	
	
	
	
	
Suppose	  

� 

! 
F (x,y) =

! 
P (x,y)

! 
i +
! 

Q (x,y) j 	is	a	continuous	vector	field	(physically,	a	force	field	such	as	gravitational	or	electric	force	
field)		How	can	we	compute	the	work	done	by	the	vector	field	in	moving	a	particle	along	a	smooth	curve	given	by	
  

� 

! r (t) = x(t),y(t) ,	

� 

a ≤ t ≤ b 	
	
(The	derivation	for	R3	is	similar).	
	

	
	



So	Work	=	
  

� 

! 
F •
! 
T ds

C
∫ 	 	 Book	notation:	Work=

  

� 

! 
F • d! r 

C
∫ 	

Example:		Find	the	work	done	by	the	vector	field	  

� 

! 
F (x,y) = xy,2x − y in	moving	a	particle	along	the	curve	given	by		  

� 

! r (t) = t,t2 ;	

� 

0 ≤ t ≤ 1	
	
	
	
	
	
	
	
	
	
	
	
	
	
Shortcut:	
	
	
	
	

So	by	definition:		Work	=	
  

� 

! 
F •
! 
T ds

C
∫ 	 	 For	computation:			Work=

  

� 

! 
F • ′ 
! r dt

a

b

∫ 										Book	shorthand	notation:	Work=
  

� 

! 
F • d! r 

C
∫ 	

	
In	General	for	  

� 

! 
F (x,y) =

! 
P (x,y)

! 
i +
! 

Q (x,y) j 	in	R2	with  

� 

! r (t) = x(t),y(t) ,	

� 

a ≤ t ≤ b 	
	
	
	
	

Work	=	
  

� 

! 
F •
! 
T ds

C
∫ =

  

� 

! 
F • ′ 
! r dt

a

b

∫ =___________________________________________________________________		“differential	form”	

	



Extends	to	R3	
	
Example:		Find	the	work	done	by	the	force	field	

  

� 

! 
F (x,y,z) = x2,y2,z2 on	a	particle	that	moves	along	the	line	segment	from		

(1,2,-1)	to	(3,2,0),	then	from	(3,2,0)	to	(3,2,1).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Alternate	notation:		Find	

� 

x2dx + y2dy
C
∫ + z2dz 	

	
	
	
	
	
	
	
	



16.3		More	methods	of	computing	the	WORK	line	integral	–	Fundamental	Theorem	of	Line	Integrals	
	
Recall	from	last	time:	to	compute	the	work	done	by	the	vector	field	in	moving	a	particle	along	a	smooth	curve	given	by	
  

� 

! r (t) = x(t),y(t) ,	

� 

a ≤ t ≤ b 	
	

By	definition:		Work	=	
  

� 

! 
F •
! 
T ds

C
∫ 	 	 For	computation:			Work=

  

� 

! 
F • ′ 
! r dt

a

b

∫ 										Book	shorthand	notation:	Work=
  

� 

! 
F • d! r 

C
∫ 	

	
Example:			
	 (a)		Find	the	work	done	by	the	vector	field	  

� 

! 
F (x,y) = −y, x in	moving	a	particle	from	(0,0)	to	(1,1)	along	the	curve	

� 

y = x2 	
	
	
	
	
	
	
	
	
	 (b)		Changing	path,	let	the	particle	from	(0,0)	to	(1,1)	along	the	curve	

� 

y = x 	

	 Just	for	variety,	use	“creative”	parameterization,	

� 

x = 4t

y = 2 t

0 ≤ t ≤ 1
4

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

	

	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 (not	to	scale)	
Observations:	
Positive	Work	
Negative	Work	
Reverse	direction	changes	sign	
Does	not	depend	on	parameterization	
Does	depend	on	path	
	



Example:			
	 (a)		Find	the	work	done	by	the	vector	field	  

� 

! 
F (x,y) = y, x in	moving	a	particle	from	(0,0)	to	(1,1)	along	the	curve	

� 

y = x2 	
	
	
	
	
	
	
	
	
	
	
	
	 (b)		Changing	path,	let	the	particle	from	(0,0)	to	(1,1)	along	the	curve	

� 

y = x 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Fundamental	Theorem	of	Line	Integrals	(book	states	differently)	
Suppose	  

� 

! 
F (x,y) = P(x,y),Q(x,y) 	where	P	and	Q	are	continuous	in	some	open	region	containing		a	piecewise	smooth	curve	C	

which	starts	at	

� 

xa ,ya( ) 	and	ends	at	

� 

xb ,yb( ) ,			if		  

� 

! 
F (x,y) =

! 
∇ f (x,y) 	for	some	

� 

f (x,y) 	at	each	point	in	the	region,	then			
	

	
  

� 

! 
F • d! r 

C
∫ =

_____________________________________________	

	
That	is,	if		  

� 

! 
F (x,y) 	is	____________________________,	we	can	evaluate	the	work	integral	by	evaluating	the_______________________	function	

at	the	endpoints	and	subtracting.		(Note	the	similarity	to	the	Fundamental	Theorem	of	Calculus)		Extends	to	R3.	
	

Proof:		For	a	smooth	curve	C	given	by	  

� 

! r (t) = x(t),y(t) ; a ≤ t ≤ b 	where	  

� 

xa ,ya( ) =
! r (a) 	and	  

� 

xb ,yb( ) =
! r (b) ,	and	

conservative	vector	field	
  

� 

! 
F (x,y) =

! 
∇ f (x,y) =

∂ f
∂ x

, ∂ f
∂ y ,	

  

� 

! 
F • d! r 

C
∫ =

! 
F • ! ′ r 

a

b

∫ dt =
	

	
	

	
	
	
On	previous	example,	note	that	  

� 

! 
F (x,y) = y, x =

! 
∇ f (x,y) 	where	

� 

f (x,y) = xy .		So	we	can	compute	

	
  

� 

! 
F • d! r 

C
∫ = f (1,1) − f (0,0)

	

	
This	idea	is	called	__________________________________________________________	
	



Suppose	for	the	same	  

� 

! 
F (x,y) = y, x ,	we	wanted	to	compute	the	work	in	moving	a	particle	around	the	piecewise	smooth	curve	

from		(1,2)	to	(0,1)	to	(3,0)	and	back	to	(1,2)	
	

	

So,	if	  

� 

! 
F (x,y) 	is	conservative,	we	have	two	additional	options	for	how	we	compute	

  

� 

! 
F • d! r 

C
∫ 	

	
	 1)	________________________________________________________________________________________	
	
	 2)	________________________________________________________________________________________	
	 	
	 Note,	if	the	curve	is	closed,	_________________________________________________	
	
	

How	do	we	know	if	  

� 

! 
F (x,y) 		is	conservative	and	if	so,	how	do	we	find	the	potential	function	______________________________________?	

	
First,	notice:	

If	  

� 

! 
F (x,y) 	is	conservative,	then	  

� 

! 
F (x,y) = P(x,y),Q(x,y) 	can	be	written		  

� 

! 
F (x,y) =

! 
∇ f (x,y) = ___________________________	

	

	
	
But	that	is	not	quite	what	we	need.		The	converse	of	this	theorem	is	only	true	in	a	special	type	of	region.	



	
Conservative	Field	Test	for	R2	

	
From	previous	examples:	

  

� 

! 
F (x,y) = −y, x 	 	 	   

� 

! 
F (x,y) = y, x 	

	
	
	
	
	
	
	
	
	
	
Example:		Show	that	

  

� 

! 
F (x,y) = 3 + 2xy, x2 − 3y2 is	conservative	and	find	the	potential	function.	

	
	
	
	
	
	
	
	
	
	
	
	



	
One	example,	three	ways	
	
Find	the	work	done	by	the	vector	field	

  

� 

! 
F (x,y) = ey , xey in	moving	a	particle	along	the	curve	given	by	  

� 

! r (t) = cos t,sin t ; 0 ≤ t ≤ π 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Identifying	conservative	vector	fields	from	plot.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Conservative	Field	Test	

	
	
	

Example:		Find	the	work	done	by	the	vector	field	  

� 

! 
F (x,y,z) = y2z + 2xz2,2xyz, xy2 + 2x2z in	moving	a	particle	along	the	curve	

given	by	  

� 

! r (t) = t ,t +1, t2 ; 0 ≤ t ≤ 1 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



16.4	Green’s	Theorem	
	
Lead	in	problem:			

Compute		

� 

x2y2 dx + xy dy
C
∫ ,	where	C	consists	of	the	arc	of	the	parabola	y=x2	from	(0,0)	to	(1,1)	followed	by	the	line	segments	

from	(1,1)	to	(0,	1)	and	then	(0,1)	to	(0,0).	
	

	
	
	
	
	
	 	 	 	 	 	 	 	 	 	 	 	 Notes:	

- See	proof	in	book.	
- Green’s	Theorem	can	be	use	reverse	

to	compute	double	integrals	and	area.	
- Green’s	Theorem	can	be	extended	to	

more	complicated	regions.	
	
	



Example:		Find	the	work	done	by	the	vector	field	
  

� 

! 
F (x,y) = e−x + y2,e−y + x2 in	moving	a	particle	along	the	piecewise	smooth	curve	

shown.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
16.5	Curl	and	Divergence	
	
	 Two	operations	on	vector	fields.		Useful	in	applications	of	vector	calculus	including	fluid	flow,	electricity	and	
magnetism.	 See	5C	page	for	physical	description	and	applications.	
	

	 	 	

	 	 	

Notation	to	help	remember	these	formulas.		Define	the	“del	operator”	
  

� 

! 
∇ =

∂
∂x
! 
i +

∂
∂y
! 
j +

∂
∂z

! 
k =

∂
∂x
, ∂
∂y
, ∂
∂z 		 	

	 Gradient:	 	
  

� 

! 
∇ =

∂
∂x

! 
i +

∂
∂y

! 
j +

∂
∂z

! 
k 	

	

	 Curl:	 	 	   

� 

curl
! 
F =
! 
∇ ×
! 
F 	

	

	 Divergence:	 	   

� 

div
! 
F =
! 
∇ •
! 
F 	



Example:		For	  

� 

! 
F = yz, xz , xy + 2z ,		compute		  

� 

curl
! 
F 	and		  

� 

div
! 
F 	

	
	
	
	
Test	for	Conservative	Vector	Field	in	R3,		
	
Recall	from	last	section:	 	 	 	
	
	
	
	
	
	
	
	
	
	
	
Physical	Description	of	Curl	and	Div:	 See	CalcPlot	3D,	Plot	vector	field,	show	curl.	

	
	

	
	



16.7ii	Examples:	FLUX	Surface	Integral	in	a	VECTOR	FIELD	over	a	Surface	given	by	a	FUNCTION	(without	parametric	surfaces)	
	
Recall,	16.7i,	surface	integral	of	a	scalar	function:	
For	surface	S	given	by	z=g(x,y)	over	a	region	D	in	the	xy	plane:	

� 

f (x,y,z)dS
S
∫∫ = f (x,y,g(x,y)) gx

2 + gy
2 +1

D
∫∫ dA

	
Similarly	for	the	other	two	orientations	y=g(x,z),		x=g(y,z)

	

	
Here	we	will	consider	an	application	of	the	Surface	Integral	
	
Suppose	S	is	a	surface	in	a	vector	field	  

� 

! 
F (x,y,z) ,	and	suppose	  

� 

! n 	is	a	unit	vector,	normal	to	the	surface	at	a	given	point.		The	
component	of	  

� 

! 
F (x,y,z) 		in	the	direction	of	  

� 

! n 	is	given	by	:	
	

	 	 	 	 	 	 	 	 	   

� 

! 
F ! n = 	

	
	
	
	
	
	
	

	 	 	 	 	 	 	 	 	 FLUX	Integral:		
  

� 

! 
F • ! n dS

S
∫∫

	
	
	
Specific	application:		Let

		
  

� 

! 
F (x,y,z) = ρ(x,y,z) ! v (x,y,z)where

		

� 

ρ
	
is	the	fluid	density	(mass/volume)	and

		
  

� 

! v 

	
is	the	velocity		

	
(length/time).		Then	the	units	of	

� 

ρ   

� 

! v 
			
are	__________________________.		Multiplying	by	area	gives	mass/time	or	rate	of	flow.	

	
	



We	will	learn	a	shorter	way	to	compute	Flux,	but	for	now	all	we	would	need	to	do	is	find	the	unit	normals,	  

� 

! n 	(with	desired	
orientation),	take	the	dot	product	with	  

� 

! 
F 	leaving	us	with	a	scalar	function.		So	if	we	call	  

� 

! 
F • ! n = f (x,y,z) ,	we	are	back	to	16.7i	

where	we	compute	surface	integrals	by	computing	dS	etc.	
	
For	surface	S	given	by	z=g(x,y)	over	a	region	D	in	the	xy	plane:	
	

� 

f (x,y,z)dS
S
∫∫ = f (x,y,g(x,y)) gx

2 + gy
2 +1

D
∫∫ dA 	

	

  

� 

(
! 
F • ! n ) dS

S
∫∫ = (

! 
F • ! n ) gx

2 + gy
2 +1 dA

D
∫∫

	
Other	orientations	similar.	
	
Before	we	get	to	an	example,	let’s	discuss	what	we	mean	by	orientation	and	review	how	to	find	unit	normals.	
	
Orientation:	
At	any	point	on	a	surface	that	has	nonzero	normal	vectors,	there	are	two	choices	for	unit	normals.		Which	one	we	choose	to	use	
in	the	above	formula	will	determine	which	direction	corresponds	to	positive	Flux.	
		
	
Unless	otherwise	stated,	the	convention	is	to	choose	the	normal	that	has	
a	positive	component	for	the	dependent	variable	(z	in	most	cases).	
	
	
	
	
	
	
	
	
	
	
	



Other	Orientations:	

		 			 	 	 	 	
	
	
	
However,	if	the	surface	is	closed,	the	convention	for	positive	orientation	is	to	choose	normals	that	point	outward.	

	 	 	 	 	 	
	
	
	
	
	
	
	



Finding	Unit	Normals:		We	found	earlier,	when	finding	tangent	planes,	that	if	we	express	a	surface	as	a	level	surface	of	a	
function	of	3	variables,	then	the	gradient	of	that	function	is	normal	to	the	level	surface.		That	is,	for	the	surface	G(x,y,z)=k,	

� 

∇G 	is	
normal	to	the	surface.		Then	the	unit	normal		

  

� 

! n =
1
∇G

G 	.	

	
Example:		Find	the	unit	normals	for	the	surface		

� 

x2 + y2 + z2 = 1;	z>0		
	
Consider	two	approaches.		One	is	easier,	but	the	other	will	lead	to	a	shortcut	in	computing	flux.	
1)		Let			

� 

G(x,y,z) = x2 + y2 + z2 	(so	the	given	surface	is	a	level	surface	of	G)	.		Then	
  

� 

! n =
1
∇G

G =
1

(2x)2 + (2y)2 + (2z)2
2x,2y,2z 	

	
2)		This	time	we	will	solve	for	z	first	to	write	the	surface	in	function	form.		

� 

z = 1− x2 − y2 .		Then	write	it	in	the	form	

� 

z − 1− x2 − y2 = 0 	so	we	can	treat	it	as	a	level	surface	of		

� 

G(x,y,z) = z − 1− x2 − y2 .		NOW	find	
  

� 

! n =
1
∇G

∇G .	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	



In	general,	if	we	find	the	unit	normals	in	the	second	way,	writing	z	in	function	form	as	

� 

z = g(x,y) ⇒ z − g(x,y) = 0

		

and	treat	this

	
surface	as	a	level	surface	of	the	function	

� 

G(x,y,z) = z − g(x,y)	then	  

� 

! 
∇ G = −gx , − gy , 1 ,	thus	  

� 

! 
∇ G = −gx( )2 + −gy( )2 +12 ,	so	

  

� 

(
! 
F • ! n ) dS

S
∫∫ =

! 
F •

! 
∇ G
! 
∇ G

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

gx
2 + gy

2 +1 dA
D
∫∫ =

! 
F •

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ gx

2 + gy
2 +1 dA

D
∫∫

	

	
	
Computing	Flux	–	the	shorter	way.	
For	a	surface	S	given	by	z=g(x,y),	IF	we	write	this	surface	in	the	form	z-g(x,y)=0	and	consider	it	a	level	surface	of	the	function	
G(x,y,z)=z-g(x,y),	then		

	 	 	  

� 

(
! 
F • ! n )dS =

S
∫∫ (

! 
F • ∇G )

D
∫∫ dA

		 (all	in	terms	of	x	and	y)	
	
will	give	the	flux	for	an	upward	orientation.		If	downward	orientation	is	desired,	we	use	

� 

−∇G 	(or	just	take	the	opposite	of	the	
answer)		Note,	the	z	component	of	

� 

∇G 	must	be	1	for	the	shortcut	to	work.	
	
Book	notation:		If	  

� 

! 
F = P,Q,R 	

  

� 

"
! 
F • d

! 
S "=

S
∫∫ (

! 
F • ! n )dS =

S
∫∫ (−P ∂g

∂x
D
∫∫ −Q ∂g

∂y
+ R)dA

	
	

Example:		Find	the	flux	for	  

� 

! 
F (x,y,z) = yz, xz, xy 	given	the	surface		

� 

z = xsin y;
0 ≤ x ≤ 2
0 ≤ y ≤ π

⎧ 
⎨ 
⎩ 

� 

Positive	orientation	assumed	unless	

otherwise	specified.	
	
	
	
	
	



	
Different	orientation	–	Formulas	follow	logically	
Example:		Find	

  

� 

! 
F • d

! 
S 

S
∫∫ 	for	  

� 

! 
F (x,y,z) = − x,2y,−z 	where	S	is	the	portion	of	

� 

y = 3x2 + 3z2	to	the	left	of	y=6	oriented	in	the	positive	y	

direction.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(ans:	24π)	



Example:		Flux	on	a	closed	surface,	

Find	flux	if	  

� 

! 
F (x,y,z) = y,2x, z − 8 	where	S	is	the	surface	of	the	solid	bound	by	4x+2y+z=8,	z=0,	y=0,	x=0	with	positive	

orientation.			

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
ans:		

	



16.8		Review	of	Line	Integrals	and	Stokes’	Theorem	
	

Problem:		Given	  

� 

! 
F (x,y,z) = x2 4xy3,y2x ,	where	C	is	the	piecewise	smooth	curve	following	the	line	segments	from	

(0,0,0)	to	(1,0,0)	to	(1,3,3)	to	(0,3,3)	and	back	to	(0,0,0),	find	work.	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	



Review	of	Line	Integrals	
	
Line	integral	With	Respect	to	Arc	Length:	
	
	
Line	integral	in	a	Vector	Field	–	Work:	
	
	 Directly:	
	
	
	
	

	 IF	  

� 

! 
F is	conservative:	

	
	
	 	 1)	
	
	
	 	 2)	
	
	
	 If	C	is	a	closed	curve	in	________________________	
	
	
	
	
	
	
	 New:			 If	C	is	a	closed	curve	in	________________________	
	
	
	
	
	
	



	
	 	 	 	 	 	 	 	 	 	 	 	 Note:		 Green’s	Theorem	is	a	special	case	
	 	 	 	 	 	 	 	 	 	 	 	 		 Partial	proof	in	book.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Back	to	previous	problem:	Given	  

� 

! 
F (x,y,z) = x2 4xy3,y2x 	where	C	is	the	piecewise	smooth	curve	following	the	line	

segments	from	(0,0,0)	to	(1,0,0)	to	(1,3,3)	to	(0,3,3)	and	back	to	(0,0,0),	find	work	
	
	

	
	



One	example,	many	ways:	

Given	  

� 

! 
F (x,y,z) = x − y, y − z, z − x 	where	C	is	the	curve	of	intersection	of	the	sphere	

� 

x2 + y2 + z2 = 2	with	the	
paraboloid	

� 

z = x2 + y2 ,	oriented	in	the	positive	direction.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	



16.9		Review	of	Flux	Integrals	and	Divergence	Theorem	
	
	
Review	of	Surface	Integrals:	
	
Surface	Integral	of	Scalar	Function:	
	
	
Surface	Integral	in	Vector	Field	-	Flux	
	
	
	
	
	
	
	
HW	Problem	16.7:	Find	Flux	
	
	
	
	
	
	
	

	
	
	



The	Divergence	Theorem:	A	tool	for	computing	flux	for	a	CLOSED	surface.	
	
	
	
	
	
	
	
	
	
	
Redo	previous	problem:	
	
	
	
	
	
	
	
	
	
	
	
Example	from	16.7	notes:		Find	Flux.	
	  

� 

! 
F (x,y,z) = y,2x, z − 8 	where	S	is	the	surface	of	the	solid	bound	by	4x+2y+z=8,	z=0,	y=0,	x=0	with	positive	orientation.			
	
	



16.6		Parametric	Surfaces	
	
Parametric	Curves:	
Recall	in	R2,	curves	can	be	expressed	as	an	equation	in	two	variables,	or	as	a	vector	function,	equivalent	to	a	pair	of	parametric	
equations.	
	

For	example:		y=x2		can	be	expressed	using	the	vector	function	  

� 

! r (t) = t, t2 	which	is	equivalent	to		C:	

� 

x = t

y = t2
⎧ 
⎨ 
⎪ 

⎩ ⎪ 	

	 	 Parametric	equations	are	sometimes	expressed	as	a	mapping	from	the	number	line	for	t	to	the	xy	plane.	

	 	 		 	 	 	 	
	
	
Using	parametric	equations	can	be	especially	helpful	in	cases	where	the	equation	can	not	be	expressed	as	a	function	of	x	or	y,	
but	CAN	be	expressed	as	functions	of	t.	

Example:		

� 

x2 + y2 = 4 		could	be	written	as	____________________,	but	parametrically	we	can	write:	

� 

x = __________
y = ___________

⎧ 
⎨ 
⎩ 

	 	

	
Parametric	Surfaces:	
Up	until	now,	we	have	expressed	surfaces	as	equations	in	3	variables,	which	may	or	may	not	be	expressed	in	function	form.		In	
a	way	similar	to	what	was	done	with	parametric	curves,	surfaces	can	be	expressed	parametrically	as:	

	
and	can	be	thought	as	a	mapping	from	R2	to	R3.	

	 	 	 	 	 	



Example:		Eliminate	the	parameters	to	determine	the	surface	given	by:		  

� 

! r (u,v) = u cosv
! 
i + u

! 
j + usin v

! 
k 	

	
	
	
	
	
	
	
	
More	often,	we	will	be	given	the	equation	of	the	surface,	and	need	to	parameterize	it.	
	
1)		Paraboloid		

� 

x = 3y2 + 2z2 + z 	
	
	
	
	
	
2)		Cylinder		

� 

x2 + y2 = 4; 0 ≤ z ≤ 1	
	
	
	
	
	
3)		Sphere:		

� 

x2 + y2 + z2 = 25 	
	
	
	
	
	
	
	
	
	
	



Finding	Tangent	Planes	to	Surfaces	Given	Parametrically	
	

	 	 	 	 	
If	v=v0,	constant,	then	  

� 

! r (u,v) =
! r (u,v0 ) 	is	a	vector	function	of	one	parameter	only	and	so	yields	a	____________________	on	the	surface,	

and	
  

� 

! 
′ r (u,v0 ) =

∂
∂u
! r (u,v) =

! r u (u,v) 	which	yields	__________________________________________________.		Similarly	if	u=u0	then	

  

� 

! 
′ r (u0,v ) =

∂
∂v
! r (u,v) =

! r v (u,v) 	shown	above.	
	
What	would	we	get	if	we	took		  

� 

! r u (u,v) ×
! r v (u,v)?	

	
Example:		Find	the	tangent	plane	to	the	surface	

  

� 

! r (u,v) = u, 2v2,u2 + v at	(2,2,3)	
	
	
	
	
	
Surface	Integrals	with	Parametric	Surfaces.	

Looking	back	at	our	derivation	of	surface	integrals	of	a	scalar	function,	we	needed	to	determine	dS	in	the	integral	

� 

f (x,y,z)dS
S
∫∫ 	

	
		
	
	
	
	
	



Using	parametric	surfaces	to	find

� 

ΔSij ,	we	already	have	  

� 

! r u (ui*, v j*) 	and	  

� 

! r u (ui*, v j*) 		tangent	to	the	surface.		We	just	need	

to	find	the	right	length	to	form	the	sides	of	the	parallelogram.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Note	that	the	four	corners	of	Rij	map	into	the	four	corners	of	Sij.							
	

By	the	definition	of	the	partial	derivative	we	find	that	
  

� 

! r u (ui*, v j*) ≈
! r (ui * +Δu, v j*) −

! r (ui*, v j*)
Δu 	so	

  

� 

! r u (ui*, v j*)Δu ≈
! r (ui * +Δu, v j*) −

! r (ui*, v j*) 	which	is	the	vector	we	need.		Similarly	for	.		  

� 

! r v (ui*, v j*)Δv 	
Then	

	   

� 

ΔSij = Δu ! r u ×Δv ! r v =
! r u ×
! r v ΔuΔv 	

Thus	to	do	a	surface	integral	in	parametric	equations,	replace		dS	with	__________________________	



16.7i	EXAMPLES:		Surface	Integral	of	a	Scalar	Function	f(x,y,z)	over	a	Surface	using	parametric	surfaces.	
	
For	surface	S	given	by	z=g(x,y)	over	a	region	D	in	the	xy	plane,	we	compute	the	surface	integral	by	replacing	z=g(x,y)	into	f	and	
using		

	 	 	
	

and	dA	can	be	viewed	as	dydx,	dxdy	or	rdrdθ	
	

	

(Recall:		The	process	is	similar	for	x=g(x,y)	or	y=g(x,z)	)
	

	
If	the	surface	is	not	easily	written	in	function	form	but	instead	is	easily	represented	parametrically,	we	may	prefer	the	
following	method.	
	
If	the	surface	S	is	given	parametrically	by	 	over	a	domain	D	in	the	uv	plane,	we	compute	the	
surface	integral	by	replacing	x	with		x(u,v),	y	with	y(u,v)	and	z	with	z(u,v)	in	f(x,y,z)	and	using	

	
and	dA	can	be	viewed	as	dudv	or	dvdu.	
	
	
	
	
Example:	
Find	the	surface	area	of	the	portion	of	the	sphere	centered	at	the	origin	of	radius	4,		that	lies	inside	the	cylinder	

� 

x2 + y2 = 12	
	
Parameterize	sphere:	

Find	dS=	  

� 

! r θ ×
! r φ dA 	

	
	
	
	
	
	
	



Revisit		Example	3	in	the	book.		We	computed	this	earlier	without	parametric	surfaces.		For	the	top	we	got	

� 

3π
2
and	for	the		

	
	
bottom			we	got	0.		Then	on	the	sides	we	had	to	break	into	two	surfaces:	___________________________	and	__________________________See		
	
Now	we	are	able	to	use	parametric	surfaces	instead,	as	done	in	the	book.	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	



16.7ii	Examples:	FLUX	Surface	Integral	in	a	VECTOR	FIELD	over	a	Surface	given	by	a	FUNCTION	(using	parametrics	surfaces)	

Recall		that	without	the	shortcut,	Flux	was	given	by:		
  

� 

! 
F • d

! 
S 

S
∫∫ = (

! 
F • ! n ) dS

S
∫∫

	
If	our	surface	is	now	given	parametrically,	we	know	that	  

� 

! r u ×
! r v 	is	normal	to	the	surface,	thus	to	make	a	unit	normal,	

  

� 

! n =
1
" r u ×
" r 
" r u ×
" r v
				and	the	flux	integral	becomes	

  

� 

! 
F • d

! 
S 

S
∫∫ = (

! 
F • ! n ) dS

S
∫∫ = (

! 
F • 1
! r u ×
! r 
! r u ×
! r v )
! r u ×
! r dA

S
∫∫

	
giving	us	the	shorter	way	to	compute	Flux:	

  

� 

! 
F • d

! 
S 

S
∫∫ = (

! 
F • ! n ) dS

S
∫∫ = (

! 
F • (! r u ×

! r v ))dA
D
∫∫

	

		
	
Example:	Compute	the	flux	of	  

� 

! 
F (x,y,z) = x,y,5 	across	S	where	S	is	the	boundary	of	the	region	enclosed	by	the	cylinder	

x2+z2=1	and	the	planes	y=0	and	x+y=2	oriented	outward	
	
This	is	a	piecewise	smooth	closed	surface,	thus	we	must	consider	the	left	side,	the	right	side,	and	the	cylinder	sides	(top	and	
bottom).	
	
Left	side:		y=0.		As	done	previously	is	a	function	y=g(x,z).		Need	left	pointing	(negative	y)	unit	normals.	
	

  

� 

(
! 
F • ! n )dS =

left
∫∫ (

! 
F • ∇G )

D
∫∫ dA = x,0,5 • 0,−1,0

D
∫∫ dA = 0 	

Right	side:		y=2-x		As	done	previously	is	a	function	y=g(x,z).		Need	right	pointing	(positive	y)	unit	normals.	
  

� 

G = y + x − 2,
! 
∇ G = 1,1,0 	

	

  

� 

(
! 
F • ! n )dS =

right
∫∫ (

! 
F • ∇G )

D
∫∫ dA = x,2 − x,5 • 1,1,0

D
∫∫ dA = 2

D
∫∫ dA = 2areaD = 2π 	



Cylindrical	Sides		
(Can	do	separately	as	top	and	bottom	z=g(x,y)	or	use	parametric	surfaces	and	do	as	one	integral	
Parameterize	S:		

		
  

� 

x = cosθ
y = y
z = sinθ

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
⇒
! r (y,θ ) = cos, y, sinθ ; 0 ≤ y ≤ 2 − x, 0 ≤θ ≤ 2π 					

	
	

  

� 

! r y = ___________ ! r θ = ______________ ⇒ 	

  

� 

! r y ×
! r θ = cosθ ,0,sinθ 		(orientation)	

  

� 

! 
F (x,y,z) = x,y,5 = ___________________ 	

	
	

  

� 

! 
F • (! r y ×

! r θ ) = _______________________ 	
	
	
	

  

� 

! 
F • d

! 
S 

S
∫∫ = (

! 
F • ! n ) dS

S
∫∫ = (

! 
F • (! r y ×

! r θ ))dA
D
∫∫ = (cos2θ + 5sinθ )dA

D
∫∫

	
	
Here,	

� 

dA = dydθ .		We	know		

� 

0 ≤ y ≤ 2 − x, 0 ≤θ ≤ 2π ,	and	in	the	parameterization,	

� 

x = cosθ 	so	

� 

0 ≤ y ≤ 2 − cosθ 	

  

� 

(cos2θ + 5sinθ )dA
D
∫∫ = (cos2θ + 5sinθ )dydθ

0

2−cosθ

∫
0

2π

∫ = … = 2π

	
	

So	the	total	Flux=

� 

0 + 2π + 2π = 4π 	
	


